登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页>资讯速递>科普课堂>深度学习算法在票据检测中的运用

深度学习算法在票据检测中的运用

1660    2019-06-06    发布者:中国测试杂志社    来源:

太阳城游戏开户 www.79cp1.com

市场经济的快速发展,各种商品流通的不断扩大,促使票据的作用日益凸显。票据不但是记录经营活动、加强财务管理的有效手段,更是维护社会秩序、保障国家和人民财产安全的重要工具,因此检测票据的真伪就显得尤为重要。


在票据检测领域,目前多采用传统目标检测方法完成票据某一防伪特征检测,而要实现票据完整检测,涉及多光照条件票据检测、票据多防伪特征检测、票据文本信息检测等多项任务,票据在不同光照条件下又呈现复杂多变图像特征,传统目标检测方法在票据多目标检测中应用复杂、实现困难。


中国测试最新一期的文章中提出了基于深度学习的机器视觉目标检测算法(点击阅读:《基于深度学习的机器视觉目标检测算法及在票据检测中应用》),在高特征维度中具有强大分辨能力,非常适合应用于票据检测的机器视觉系统中。


在智能制造与装备等产业中,机器视觉检测技术因其实时性好、准确性高、适用性广而得到广泛应用。目标检测作为机器视觉系统主要任务之一,在工业相机采集高分辨率图像信息基础上,实现多目标物体识别、位置预测,并关联目标物体位置信息与世界坐标信息,控制视觉检测系统驱动器进行相应机器检测操作?;魇泳跄勘昙觳馑惴ㄓ赡勘晏卣魈崛∑?、分类器与位置区域搜索方法构成。其中,目标特征提取器由人为设计,提取目标图像颜色、形状、纹理等信息;目标分类器则是基于提取器得到信息进行特征计算,确定目标类别,代表性的有基于支持向量机分类器、Adaboost分类器;目标位置区域搜索方法通常是采用滑动窗口在图像上滑动,对每个滑动区域进行特征提取与分类,判断该区域存在目标概率及其位置。


卷积神经网络(CNN)具有特征学习与归纳能力强特点,深度学习采用端到端学习策略,将特征提取、目标分类、目标定位任务整合到神经网络架构中,实现从图像输入到目标分类与定位检测结果输出的统一过程,与经典目标检测算法相比,有效地简化算法过程,提高检测效率,以CNN为代表的深度学习方法成为目标检测领域研究热点。


将以上两者有效结合,形成了基于深度学习的机器视觉目标算法。按实现原理可分为基于区域候选的目标检测算法、基于回归方法的目标检测算法,两者区别主要在于是否采用区域候选方法。


目标检测算法在对票据检测中,系统首先由工业相机获取包含票据目标的高分辨率图像,并检测票据目标在图像上的位置并确定其票据类别、光源激发条件信息;其次,完成票据目标所有局部防伪特征检测,并与该光源条件下标准票据防伪特征比对,判定票据真伪;最后,系统采用图像文本检测方法读取票据票号、数额等信息,完成票据信息检测?;谏疃妊暗幕魇泳跄勘昙觳馑惴ㄌ岣吡似本菁觳饩?、实时性能,从而构建面向票据检测应用的智能检测系统。



免责声明

(1)本网转载或来自其他发布者(非中国测试杂志社)的作品,目的在于传递更多信息,并不代表本网赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。

(2)如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

澳门太阳城网址 | 申博彩票登陆 | 菲律宾申博娱乐 | 太阳城申博代理加盟 | 太阳城游戏官网 |
  • 《魅力中国城 第二季》 20181104 平凉VS玉树 2020-10-24
  • 北京王府井:王府井不是王府的井 2020-10-24
  • 挺好! 倪大红获“最佳男主角” 2020-10-24
  • 2019年全球票房收入破纪录!高达425亿美元 2020-10-24
  • 一雕一琢 匠心筑梦:温润如玉的合浦角雕 能让时间静止 2020-10-24
  • 拉萨净土健康产品在南京展销 28家重点企业参展 2020-10-24
  • 3天4夜,连贯考评78个课目 2020-08-22
  • “最差”魔术师变出一座中国最大图书村 2020-08-22
  • 李保刚:IP开发要国际化也要民众化 2020-08-22
  • 亲民报道也要把握尺度防范风险 2020-08-22
  • 为避免步长江白鲟后尘 东海大黄鱼正在接受野化训练 2020-08-22
  • 最高人民法院、最高人民检察院关于办理利用互联网、移动通讯终端、声讯台制作、复制、出版、贩卖、传播淫秽电子信息刑事案件具体应用法律若干问题的解释 2020-06-24
  • 广东省政协委员:医疗资源不均衡问题需系统治理 2020-06-24
  • 《时代楷模发布厅》 20150626 2020-06-24
  • 组局 | 山月不知心底事:拥抱时代 不负青春 2020-06-24